

- 1. Neurons **at the same layer** do not directly interact with each other.

Channel responses naturally encodes which pattern is at where.

Idea: Enable channels at the same layer to communicate with each other and then calibrate their responses accordingly.

Goal: Different filters learn to focus on different useful patterns.

object detection and semantic segmentation.

3. Captured more **diverse** representations with **light**weight networks.

Cross-channel Communication Networks

Jianwei Yang¹, Zhile Ren¹, Chuang Gan³, Hongyuan Zhu⁴, Devi Parikh^{1,2}

1. Georgia Tech; 2. Facebook AI Research (FAIR); 3. MIT-IBM Watson AI Lab; 4. Institute for Infocomm Research, A* Star

$$d_l = \frac{1}{(n_l)^2} \sum_i \sum_j |c_l^{ij}|^{\checkmark}$$

EXPERIMENTS

Performance on vision tasks

	ResNet-20			ResNet-56			ResNet-110			Wide-ResNet			Detection	Pascal VOC	СОСО
	Size	FLOPs	Acc.	Size	FLOPs	Acc.	Size	FLOPs	Acc.	Size	FLOPs	Acc.	FRCNN	74.6	33.9
Baseline	0.28	41.7M	67.73	0.86	128.2M	71.05	1.74	257.9M	72.01	26.86	3.84G	77.96	FRCNN + SE	74.8	34.3
Baseline + SE	0.28	41.8M	68.57	0.87	128.5M	72.00	1.76	258.5M	72.47	27.26	3.84G	78.57	FRCNN + C3	75.6	34.8
Baseline + C3	0.35	46.0M	69.34	0.93	132.5M	72.27	1.81	262.2N	73.36	26.93	3.87G	78.34	Table. Comparisons on		
	Table. Comparisons on image classification on CIFAR-100									- object detection					
	ResNet-18			ResNet-50			ResNet-101			ResNeXt-50			Segmentation	Mean IoU	Mean Acc.
	Size	top-1	top-5	Size	top-1	top-5	Size	top-1	top-5	Size	top-1 t	ор-5	Deeplabv2	75.2	85.3
Baseline	11.7	30.28	10.52	25.6	23.61	7.27	44.6	22.48	6.18	34.9	23.85 7	7.12	Deeplabv2 + SE	75.6	85.6
Baseline + SE	11.8	30.15	10.72	28.1	22.51	6.43	49.3	22.14	6.14	37.5	22.90 6	5.44	Deeplabv2 + C3	75.7	86.0
Baseline + C3	12.0	29.30	10.48	25.9	23.19	6.60	44.9	21.93	6.02	35.3	22.51 6	5.23	Table. Comparisons on		
	Table. Comparisons on image classification on ImageNet											semantic segmentation			

C3 blocks improve image classification performance with a few time and memory overhead C3 blocks also improve object detection and semantic segmentation performance

Analysis and Visualizat

Institute for Infocomm Researc

tion	00												
				CAM Visualizations									
			W// C3	Input	W/O C3	W/ C3	Input	W/O C3	W/ C3				
Net-56	0.86	<u>сэ</u> М	0.93M			S Port	ane	Sue	SUG				
Net-62	0.96	М	1.03M	Care I									
Net-74	1.15	М	1.22M										
Net-86	1.35	М	1.41M										
Net-98	1.54	М	1.61M										
Net-11() 1.74	М	1.80M					2.97					
Tab	le. Mode	l Size		FLA	A Contraction	A Charles							
110	Encode and me	er, de ess. p	coder assing	C3 helps to learn more complementary filters covering the regions of all objects (either single or multiple)									
5	are all r	neces	sary.	Top-8 channel responses									
1 5	W/O C3												
in)) t)	W/ C3												
160	W/O C3												
aseline t.	w/ C3												